Modeling Air Entrainment and Transport in a Hydraulic Jump using Two-Fluid RANS and DES Turbulence Models

نویسندگان

  • Franz Mayinger
  • Jingsen Ma
  • Richard T. Lahey
چکیده

Both RaNS (Reynolds-averaged Navier-Stokes) and DES (Detached Eddy Simulation) type turbulence models were used in conjunction with a two-fluid model of bubbly flow and a new subgrid air entrainment model to predict air entrainment and transport in a hydraulic jump. It was found that the void fraction profiles predicted by both methods are in agreement with the experimental data in the lower shear layer region, which contains the air bubbles entrained at the so-called toe of the hydraulic jump. In contrast, in the upper roller region behind the toe, the averaged results of the DES turbulence model gives accurate predictions while a RaNS turbulence model does not. This is because the DES turbulence model successfully captures the strong fluctuations on the free surface which allows it to entrain air near the top of the roller region. In contrast, RaNS type turbulence model results in a steady, smooth interface which fails to capture the wave-induced bubble sources in that region. To our knowledge, this study is the first successful quantitative numerical simulation of the overall void fraction profiles in a hydraulic jump.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental and Numerical Investigation of Bottom Outlet Hydraulic Model

Using experimental models along with conducting numerical analysis have been widely used in performance recognition and optimization of hydraulic equipments. Numerical modeling has lower cost rather than experimental one; however practical tests are commonly used because of the hydraulic structure importance especially in dams. Meanwhile numerical methods could be used for future designs throug...

متن کامل

Similitude and scale effects of air entrainment in hydraulic jumps Similitude et effets d’échelle de l’entraînement d’air dans les ressauts hydrauliques

A hydraulic jump is characterized by some strong turbulence and air entrainment in the roller. New measurements were performed in two channels in which similar experiments with identical inflow Froude numbers and relative channel widths were conducted with a geometric scaling ratio of 2:1. Void fraction distributions showed the presence of an advection/diffusion shear layer in which the data fo...

متن کامل

Convective transport of air bubbles in strong hydraulic jumps

A hydraulic jump is a flow singularity characterised by a significant amount of air entrainment in the shear zone. The air is entrapped at the jump toe that is a discontinuity between the impinging flow and the roller. The impingement point is a source of air bubbles, as well as a source of vorticity. Herein the convective transport of air bubbles in the jump roller is re-visited. Some analytic...

متن کامل

Hydraulic jumps: turbulence and air bubble entrainment

-A free-surface flow can change from a supercritical to subcritical flow with a strong dissipative phenomenon called a hydraulic jump. Herein the progress and development in turbulent hydraulic jumps are reviewed with a focus on hydraulic jumps operating at large Reynolds numbers typically encountered in natural streams and hydraulic structures. The key features of the turbulent hydraulic jumps...

متن کامل

Performance assessment of OpenFOAM and FLOW-3D in the numerical modeling of a low Reynolds number hydraulic jump

A comparative performance analysis of the CFD platforms OpenFOAM and FLOW-3D is presented, focusing on a 3D swirling turbulent flow: a steady hydraulic jump at low Reynolds number. Turbulence is treated using RANS approach RNG k-ε. A Volume Of Fluid (VOF) method is used to track the airewater interface, consequently aeration is modeled using an EulerianeEulerian approach. Structured meshes of c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012